Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Am J Pathol ; 192(7): 1001-1015, 2022 07.
Article in English | MEDLINE | ID: covidwho-1906700

ABSTRACT

Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.


Subject(s)
Angiopoietin-2 , COVID-19 , Necroptosis , Respiratory Distress Syndrome , Angiopoietin-2/metabolism , COVID-19/complications , Humans , Proteomics , Respiratory Distress Syndrome/virology
2.
iScience ; 25(7): 104612, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1895109

ABSTRACT

The coronavirus disease-19 (COVID-19) pandemic has ravaged global healthcare with previously unseen levels of morbidity and mortality. In this study, we performed large-scale integrative multi-omics analyses of serum obtained from COVID-19 patients with the goal of uncovering novel pathogenic complexities of this disease and identifying molecular signatures that predict clinical outcomes. We assembled a network of protein-metabolite interactions through targeted metabolomic and proteomic profiling in 330 COVID-19 patients compared to 97 non-COVID, hospitalized controls. Our network identified distinct protein-metabolite cross talk related to immune modulation, energy and nucleotide metabolism, vascular homeostasis, and collagen catabolism. Additionally, our data linked multiple proteins and metabolites to clinical indices associated with long-term mortality and morbidity. Finally, we developed a novel composite outcome measure for COVID-19 disease severity based on metabolomics data. The model predicts severe disease with a concordance index of around 0.69, and shows high predictive power of 0.83-0.93 in two independent datasets.

3.
Crit Care Explor ; 3(12): e0589, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1608099

ABSTRACT

OBJECTIVES: This report aims to characterize the kinetics of serum albumin in critically ill patients with coronavirus disease 2019 compared with critically ill patients with sepsis-induced acute respiratory distress syndrome. DESIGN: Retrospective analysis. SETTING: We analyzed two critically ill cohorts, one with coronavirus disease 2019 and another with sepsis-induced acute respiratory distress syndrome, treated in the New York Presbyterian Hospital-Weill Cornell Medical Center. PATIENTS: Adult patients in the coronavirus disease 2019 cohort, diagnosed through reverse transcriptase-polymerase chain reaction assays performed on nasopharyngeal swabs, were admitted from March 3, 2020, to July 10, 2020. Adult patients in the sepsis-induced acute respiratory distress syndrome cohort, defined by Sepsis III criteria receipt of invasive mechanical ventilation and a Pao2/Fio2 ratio less than 300 were admitted from December 12, 2006, to February 26, 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We evaluated serial serum albumin levels within 30 days after ICU admission in each cohort. We then examined the albumin progression trajectories, aligned at ICU admission time to test the relationship at a similar point in disease progression, in survivors and nonsurvivors. Albumin trajectory in all critically ill coronavirus disease 2019 patients show two distinct phases: phase I (deterioration) showing rapid albumin loss and phase II (recovery) showing albumin stabilization or improvement. Meanwhile, albumin recovery predicted clinical improvement in critical coronavirus disease 2019. In addition, we found a deterioration and recovery trends in survivors in the sepsis-induced acute respiratory distress syndrome cohort but did not find such two-phase trend in nonsurvivors. CONCLUSIONS: The changes in albumin associated with coronavirus disease 2019 associated respiratory failure are transient compared with sepsis-associated acute respiratory distress syndrome and highlight the potential for recovery following a protracted course of severe coronavirus disease 2019.

SELECTION OF CITATIONS
SEARCH DETAIL